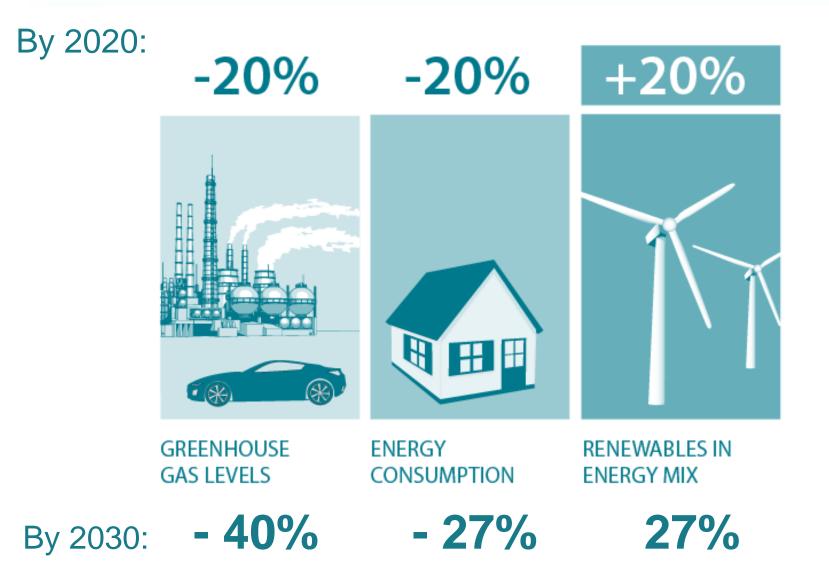


Planning Considerations for Emerging Renewable Energy Technologies

EU SPECIAL PILOT TRAINING 23rd July, 2015

John McCann, SEAI

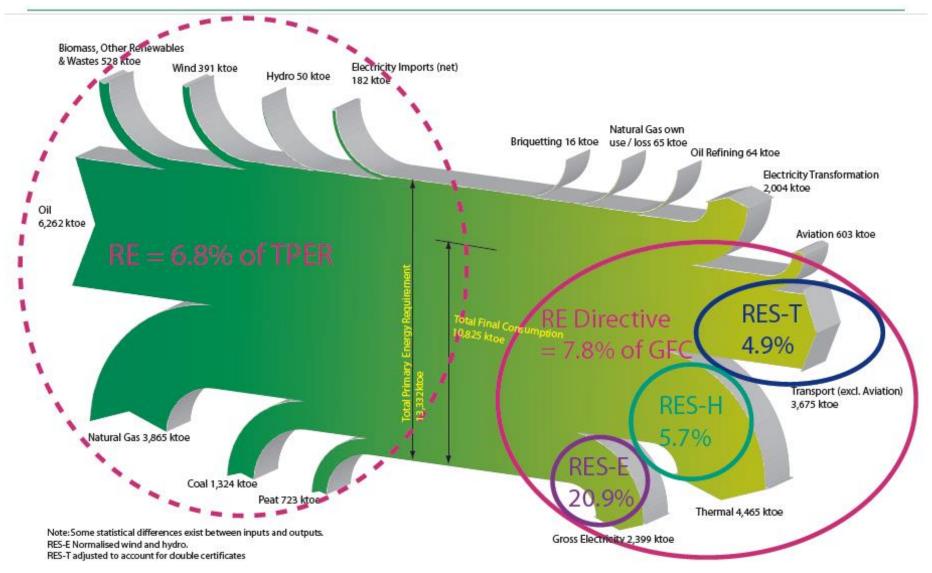
- EU Renewable Energy Policies and Targets
- Current and Emerging Renewable Technologies
- Planning Considerations for Renewable Energy Technologies
- Key Technology Examples
- The Ultimate Emerging Technology



• EU Renewable Energy Policies and Targets

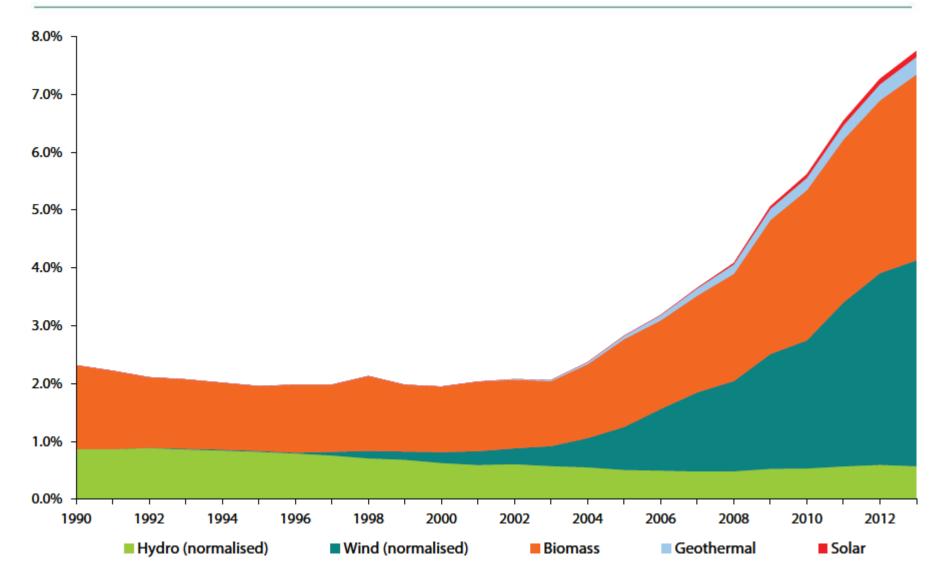
- Current and Emerging Renewable Technologies
- Planning Considerations for Renewable Energy Technologies
- Key Technology Examples
- The Ultimate Emerging Technology

The 20-20-20 EU Policy

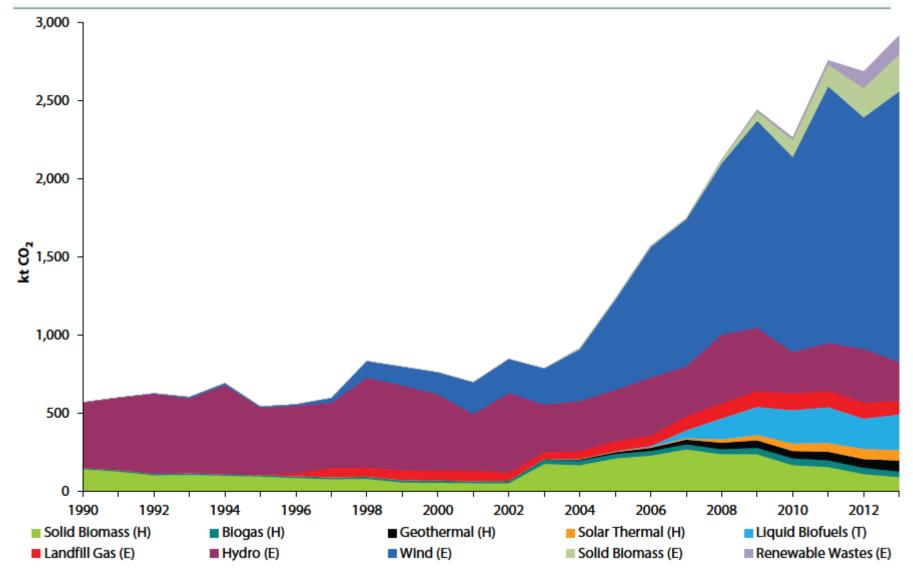


EU Renewable Energy Targets

- EU Directive 2009/28/EC
- Mandatory Targets for Ireland
- 16% RES Energy by 2020
 - also 10% RES-Transport by 2020
- Indicative Sectoral Targets
 - Transport 10%; Electricity 40%; Heat 12%
- EU 2030 Framework for Climate and Energy
- EU Wide 27% Share of Renewable Energy, No Individual National Targets for Renewable Energy



2020 Targets Progress End of 2013



Renewable Energy Contribution to Gross Final Consumption

Avoided CO₂ Emissions from Renewable Energy

- EU Renewable Energy Policies and Targets
- Current and Emerging Renewable Technologies
- Planning Considerations for Renewable Energy Technologies
- Key Technology Examples
- The Ultimate Emerging Technology

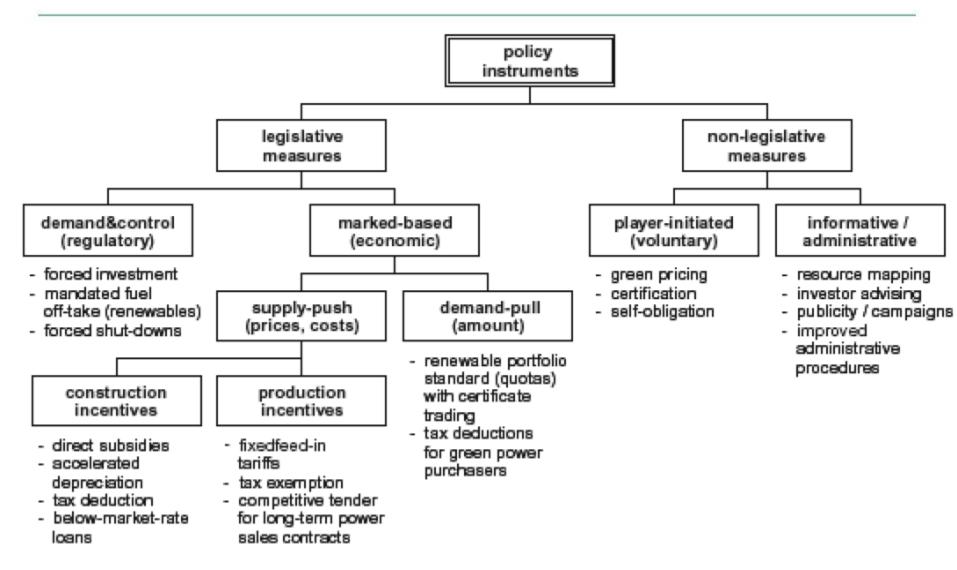
Current Renewable Energy Technologies:

- Hydropower Large scale, small scale, micro-hydro
- Wind Energy Onshore, Offshore
- Solar Energy Solar Thermal, Solar PV, CSP
- Geothermal Energy Heat and Electricity
- Bio-Energy Biomass, Biogas, Biofuels
- Heat Pumps Air-, Ground- & Water- Source
 Emerging Technologies:
- Ocean Energy Tidal Energy, Wave Energy
- Biofuels- Cellulosic Bio-Ethanol, Algae Fuels
- Geothermal Hot Dry Rock
- Solar Concentrated Solar PV, Artificial Photosynthesis
- Wind Floating Offshore, Kite Power

IEA RETD Emerging Technology Matrix

	Research & Development "Concept"	Demonstration "Emerging"	Early Deployment "Emerging"	(Near) Commercial "Advanced"
Hydropower		 Hydrokinetic turbines 		Run-of-riverReservoirsPumped storage
Bioenergy	 Aquatic plant- derived fuels 	 Pyrolysis biofuels Gasification based biofuels or biomethane Fermentation of lignocellulosic material 	 Gasification- based power Lignocellulosic syngas-based biofuels 	 Combustion for power and/or heat Anaerobic digestion Sugar & starch ethanol Plant & seed oil biodiesel
Wind	Wind kitesHigher-altitude wind generator		Offshore, large turbine	OnshoreTurbines for water pumping
Solar	Solar fuels	Solar cooling	 Solar cooking Concentrating PV CSP 	 PV Low temp solar thermal Passive solar architecture
Geothermal	 Submarine geothermal 	Engineered geothermal systems		 Geothermal heat pumps Hydrothermal binary cycle/condensing flash
Marine	 Currents/thermal conversion Salinity gradients 	Wave	Tidal currents	Tidal range

Source: IEA RETD



Source: IEA RETD

Energy Policy Mechanisms

Source: N. Enzensberger et al. Energy Policy 30 (2002)

Ireland: Current Policy Framework

	Policy Category		i	Capital Grants		Prod Incentive	Tax Incentive	Regulation
ector	Technology	R&D	Demonstration	Deployment	Producer Grant	Feed in Tariff		
	Large Wind (> 5MW)	Y				Y	Y	
	Small Wind (<=5MW)	Y				Y	Y	
	Offshore Wind	Y					Y	
	Hydropower	Y				Y	Y	
	Wave Energy	Y	Y	Y			Y	
	Tidal Energy	Y	Y	Y			Y	
	Solar PV Large Scale	Y					Y	
	Solar PV Commercial Building	Y					Y	Y
ity	Solar PV Microgeneration	Y					Y	Y
Electricity	Geothermal Electricity	Y					Y	
Ele	Biomass Landfill Gas	Y				Y	Y	
	Biomass Combustion	Y			Y	Y	Y	
	Biomass Combustion - Energy Crops	Y			Y	Y	Y	
Large E	Large Biomass CHP (> 1500kW)	Y			Y	Y	Y	
	Small Biomass CHP (<=1500kW)	Y			Y	Y	Y	
	Large AD Non CHP (> 500kW)	Y				Y	Y	
	Small AD Non CHP (<= 500kW)	Y				Y	Y	
	Large AD CHP (> 500kW)	Y				Y	Y	
	Small AD CHP (<= 500kW)	Y				Y	Y	
	Biomass Boiler Wood Chip	Y			Y	!	Y	Y
	Biomass Boiler Pellet	Y			Y	!	Y	Y
	Biomass Boiler Energy Crops	Y			Y	1	Y	Y
at	Solar Thermal - Commercial	Y					Y	Y
Heat	Solar Thermal - Domestic	Y		Y			Y	Y
	Heat Pump - Air Source	Y					Y	Y
	Heat Pump - Ground Source	Y					Y	Y
	Heat Pump - Water Source	Y					Y	Y
	BioEthanol	Y					Y	Y
port	BioDiesel	Y					Y	Y
ns	BioGas	Y					Y	
F	Electric Vehicles	Y		Y			Y	

Associated Technologies and Infrastructure

Energy Storage:

- Pumped Storage
- Flywheels
- Battery Storage
- Heat Storage

Infrastructure:

- Transport Biomass Harvesting Distribution & Import
- Heat Distribution Networks
- Electricity and Gas Networks for Renewable Energy
- Electric Vehicle Recharging Stations
- ICT Infrastructure, Smart Grids, Smart Cities

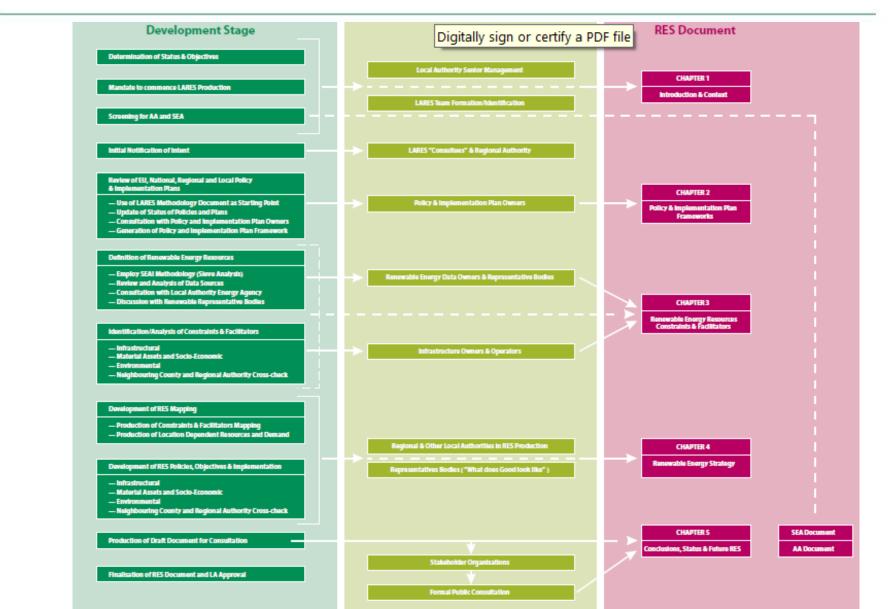
- EU Renewable Energy Policies and Targets
- Current and Emerging Renewable Technologies
- Planning Considerations for Renewable Energy Technologies
- Key Technology Examples
- The Ultimate Emerging Technology

Planning Consideration of Novel RE Technologies

- Forward & Strategic Planning
 - LARES
 - CDP
 - SDZ
 - LAP
 - SEAP
- Development Consenting Process
 - National Guidance for Further Technologies
 - Further Planning Exemptions
 - Aesthetics, Local Planning Guidance

SEAI LARES High Level Objectives

- Align County Development
 Plans with National Targets
- Facilitate Consistent Approach to RE by Local Authorities
- Ensure Alignment with Regional Development Plans
- Ensure All Available Resources are Considered
- Provide Appropriate Signals to RE Project Developers
- Facilitate Planning and Development of Electricity Infrastructure for Renewable Energy Projects



Methodology for LOCAL AUTHORITY RENEWABLE ENERGY STRATEGIES

LARES Development Process

Key Renewable Energy Land Use Interactions

- Location & Land-Use
- Landscape and Visual Impact
- Site Conditions and Operation
- Infrastructure

Location & Land Use

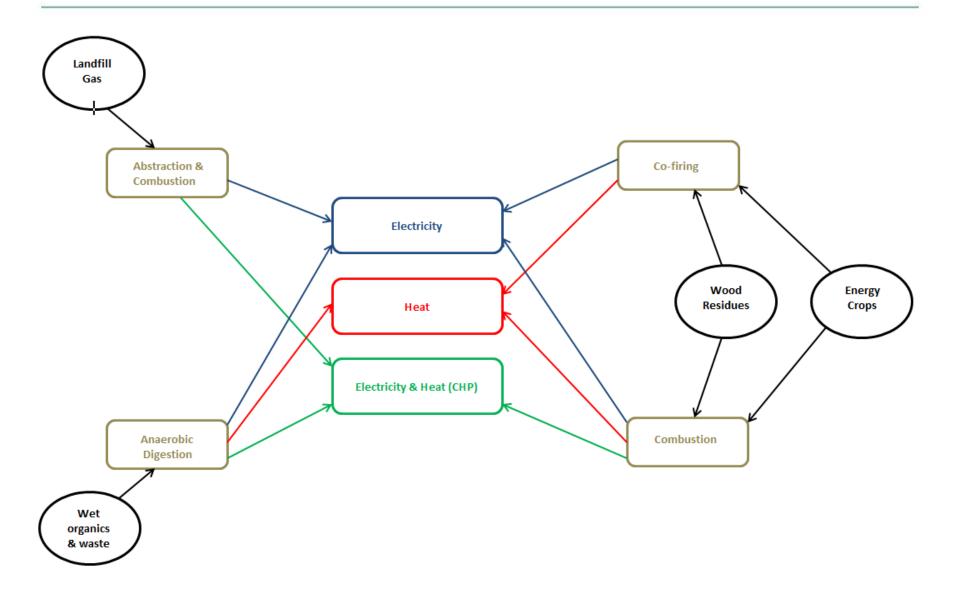
Renewable Energy Source	Key Issues
Onshore Wind	Proximity to dwellings/businesses, habitats, other windfarms, other sensitive sites, etc.
Offshore Wind	Foreshore licence
Bioenergy	Proximity to raw material, dwellings, market, road network
Hydropower	Land take; impact on fish stocks
Solar	Specify for commercial or large-scale scheme at planning
Ocean Energy	Foreshore lease and onshore planning permission
Geothermal	Proximity to aquifers/water courses

Landscape & Visual Impact

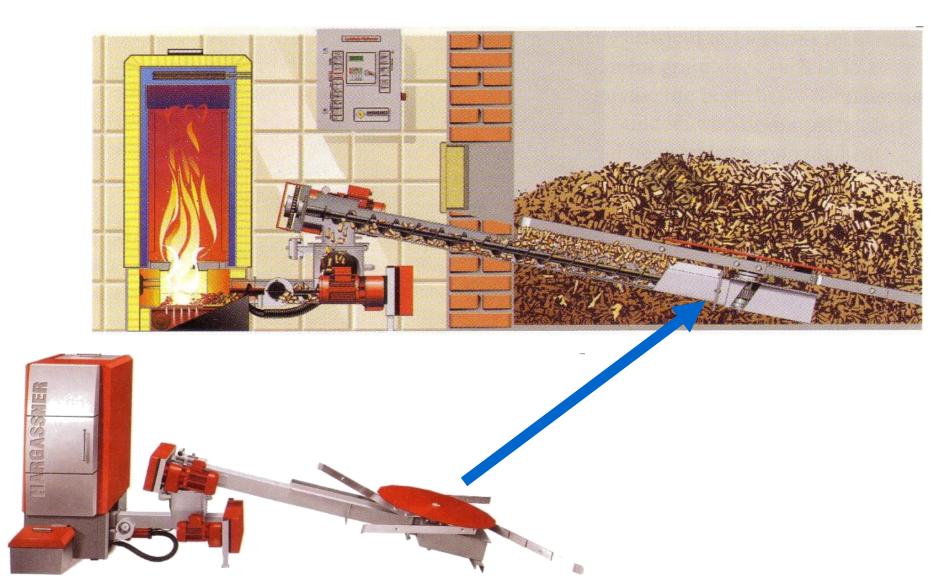
Renewable Energy Source	Key Issues
Onshore Wind	Positioning, synchronicity of blades, visibility of access, visibility of cables and transformers
Offshore Wind	Height and number of turbines, distance from shore, position in relation to the horizon
Bioenergy	Impact depends on location – can be integrated into an industrial setting with little impact
Hydropower	Design of facility important to reduce impact on scenery
Solar	Protected structures or architectural conservation areas
Ocean Energy	Case-by-case
Geothermal	Large scale: stations for generation/distribution of electricity

Site Conditions & Operation

Renewable Energy Source	Key Issues
Onshore Wind	Landslide risk, shadow flicker, EM interference, ground water, ground conditions/geology
Offshore Wind	Potential disturbance during construction, coastal erosion, flooding
Bioenergy	Feedstock, pollution, contamination
Hydropower	Downstream effect, flood risk, construction effect on water course
Solar	N/A
Ocean Energy	Construction impacts from piling, dredging, etc.
Geothermal	Mostly in relation to deep, i.e. drilling etc.


Renewable Energy Source	Key Issues
Onshore Wind	Grid connection; access for construction and accessibility for HGVs and cranes
Offshore Wind	Grid connections; access for construction and accessibility for HGVs and cranes
Bioenergy	Proximity to the National Grid / gas network; distribution of heat; traffic considerations for delivery of feedstock
Hydropower	Grid connection; access for construction and maintenance
Solar	Positioning of transformers and power cables where electricity is to be exported to the grid
Ocean Energy	Transport of components to onshore and elements
Geothermal	Access for construction and maintenance

- EU Renewable Energy Policies and Targets
- Current and Emerging Renewable Technologies
- Planning Considerations for Renewable Energy Technologies
- Key Technology Examples
- The Ultimate Emerging Technology

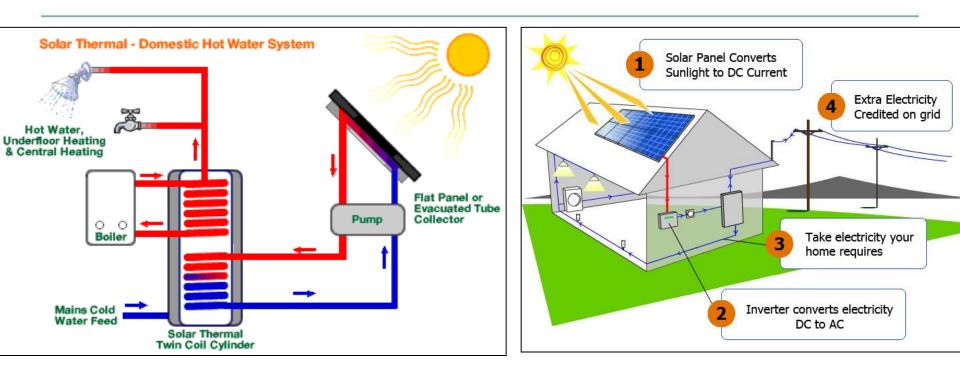


Conversion Technology: Biomass

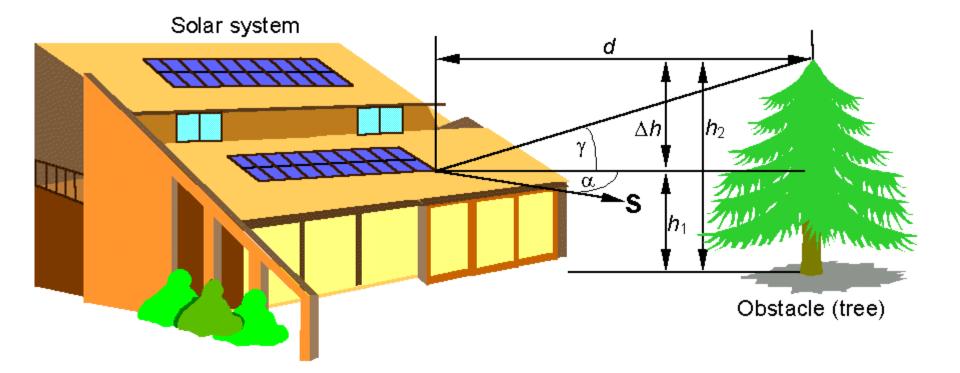
Biomass Conversion Technology Wood-Chip Boiler

Biomass: Constraints & Facilitators

Location & Land Use	Landscape & Visual Impact	Site Conditions & Operation	Infrastructure	
Proximity to raw material supply	Combustion facilities typically have large	Feedstock:Scale of facilityRecycling levels (WtE)	Electricity: proximity to grid connection is important	
Proximity of bioenergy facility to dwellings and	stacks	Non-haz wastesSorting of residuals	Heat: distribution network for users (or onsite use)	
other sensitive locations such as schools and hospitals	Different facility will different stack/chimney	 Pollution: Emissions Noise (ops/traffic) Odour 	Traffic considerations for round-the-clock operations of large scale	
Proximity to end users, especially for heat-	requirements	 Light pollution Contaminants to soil or groundwater 	 facility: Proximity to transport network 	
producing facilities	The siting of the facility	Other considerations:	Accessibility for	
Industries using their own residual resources do not need a well-developed transport network	will determine the impact, e.g. on-farm AD sites or landfill gas facilities	 Seepage from storage Removal of cooling water/agents from gas cleaning Hazardous end products 	feedstock delivery / residue removal • Road capacity • Road maintenance • Freight / rail?	



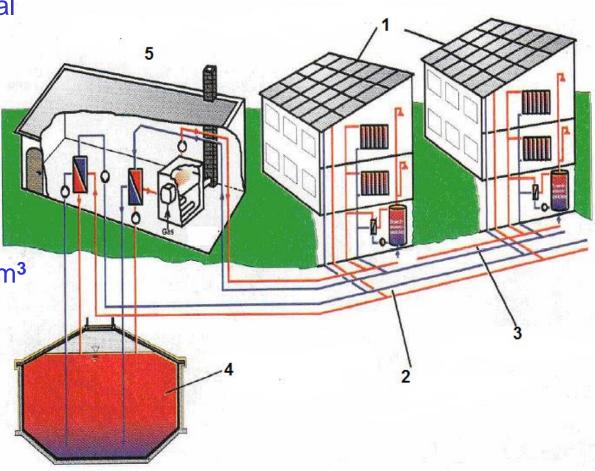
Biomass District Heating: Tralee



Conversion Technology: Solar

Effect of Shading

Obstacle height Angle and Azimuth

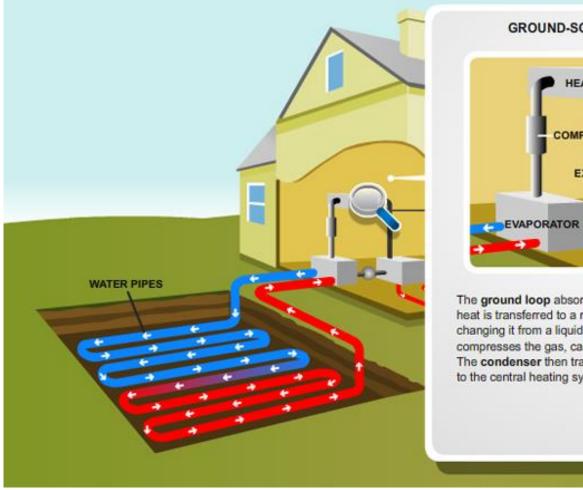


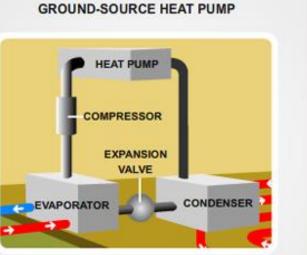
Solar Thermal at the Neighbourhood Scale

Nearby' or district heating supported by active solar thermal system and seasonal heat storage

Example: the Friedrichshafen project

- 1 Collector array 5600 m²
- 2 Collector network
- 3 Heating network
- 4 Seasonal storage 12000 m³
- 5 Heating plant

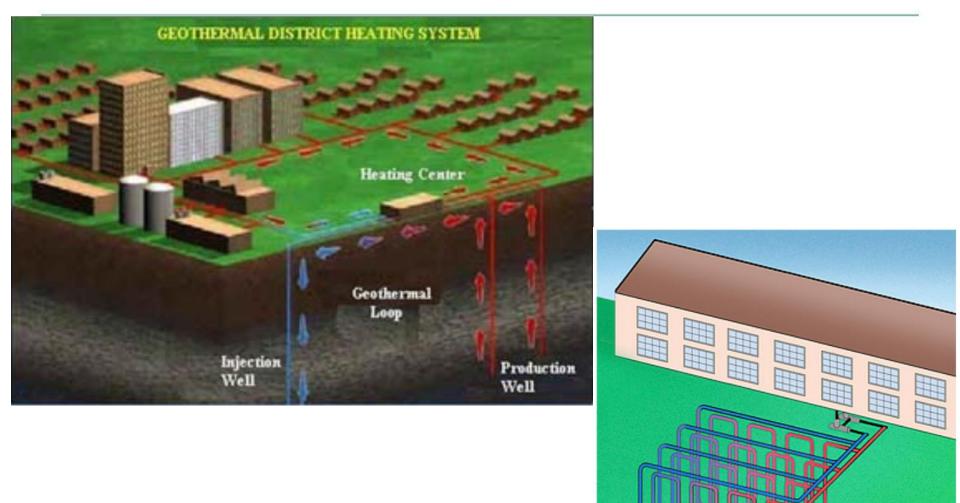



Solar Power: Constraints & Facilitators

Location & Land Use	Landscape & Visual Impact	Site Conditions & Operation	Infrastructure	
Most solar installations in use involve integrated microgeneration, i.e. planning permission not required	Not likely to have significant visual impact but assessed on case- by-case basis	N1/A	If electricity from PV being exported to the Grid, local authority to	
Incorporated into facades of buildings	Special provisions for	N/A	provide guidance on location of transformers and cables	
LA might want to define type of scheme, e.g. commercial or large-scale	protected structures or in architectural conservation areas.			

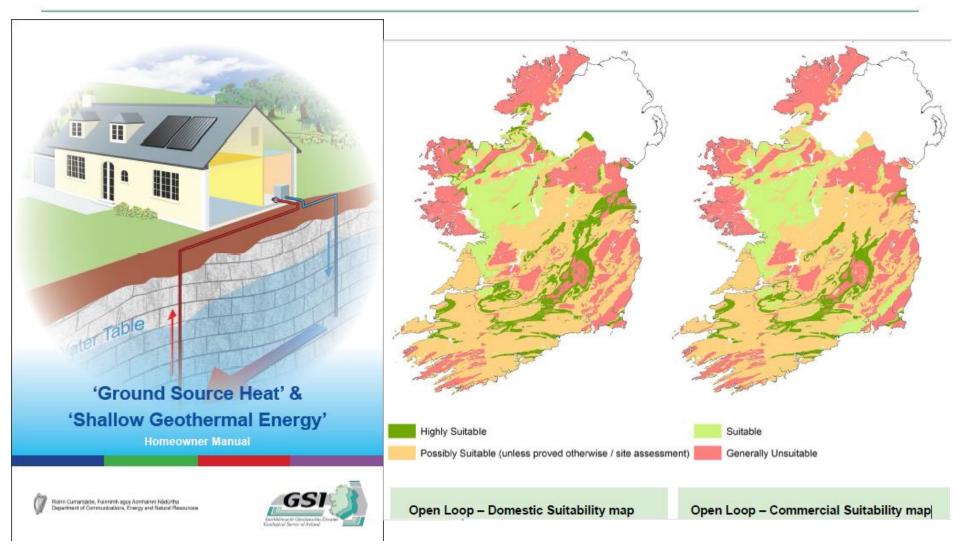
Conversion Technology: Geothermal

The ground loop absorbs heat from the ground. The heat is transferred to a refrigerant by the evaporator, changing it from a liquid to a gas. The compressor compresses the gas, causing the temperature to rise. The condenser then transfers the heat from the hot gas to the central heating system.



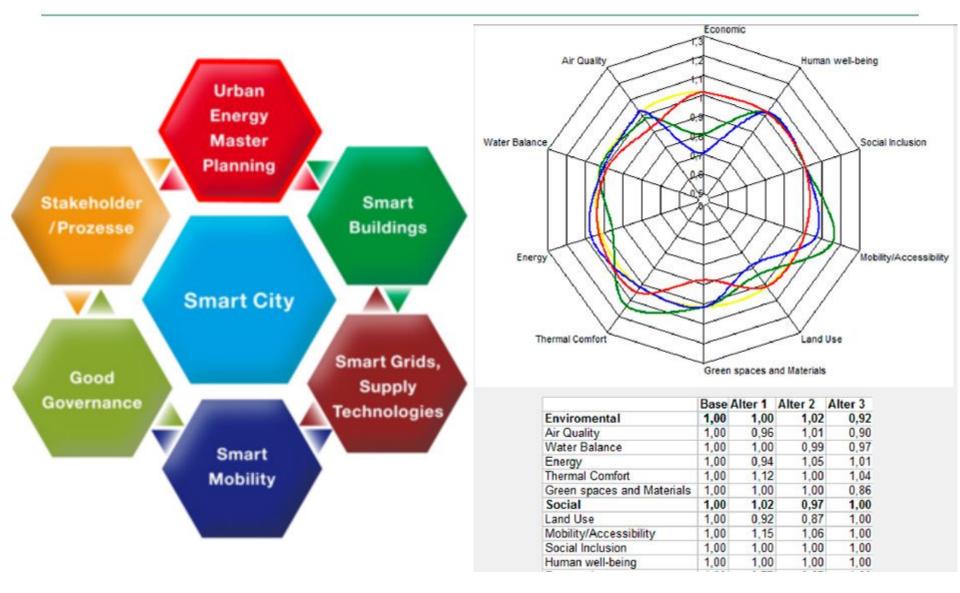
Geothermal: Constraints & Facilitators

Location & Land Use	Landscape & Visual Impact	Site Conditions & Operation	Infrastructure
May need to consider the possibility of the following issues, depending on whether it is deep or shallow:	Try and maintain as many elements as possible underground to reduce visual impact over ground.	 Potential issues: Impact of underground works on surface structures and water sources and the risk of subsidence. 	
 Proximity to water resources Location of unused mining facilities and underground works Proximity of shallow geothermal systems to each other Potential of open loop shallow systems in aquifers 	Deep geothermal operations may require generation/distribution stations above boreholes	 Monitoring of surface and groundwater quality Seismic factors (drilling near faults etc.) and the use of reservoir stimulation with some technologies Risks, e.g. pockets of gas Archaeology Noise 	Consideration to be given to construction and decommissioning access
	Shallow operations can minimise visual impact, e.g. 80 kW closed loop below IKEA car park		

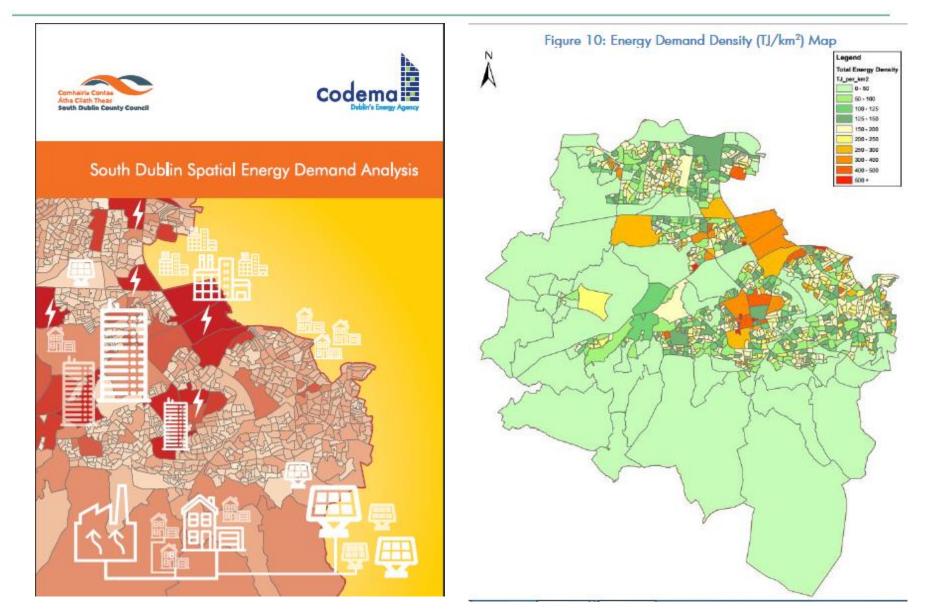


Geothermal: District Heating

Geothermal: New Information Resources



- EU Renewable Energy Policies and Targets
- Current and Emerging Renewable Technologies
- Planning Considerations for Renewable Energy Technologies
- Key Technology Examples
- The Ultimate Emerging Technology



Smart Cities – Integrated Urban Energy Planning

SEAI R,D&D Project Funding: SDCC Energy Demand Analysis

- EU Renewable Energy Policies and Targets
- Current and Emerging Renewable Technologies
- Planning Considerations for Renewable Energy Technologies
- Key Technology Examples
- The Ultimate Emerging Technology

Thank you

John.McCann@SEAI.ie

